Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective
نویسندگان
چکیده
Solving inverse problems based on computationally demanding forward models is ubiquitously difficult since one is necessarily limited to just a few observations of the response surface. The usual practice is to replace the response surface with a surrogate. However, this approach induces additional uncertainties on the posterior distributions. The main contribution of this work is the reformulation of the Bayesian solution of the inverse problem when the expensive forward model is replaced by the surrogate. We derive three approximations of the reformulated solution with increasing complexity and fidelity. We demonstrate numerically that the proposed approximations capture the uncertainty of the solution of the inverse problem induced by the fact that the forward model is replaced by a finite number of simulations. We demonstrate our approach in two different problems: locating the contamination source of a diffusive process and inferring the permeability field of an oil reservoir based on measurements of the oil-cut curves.
منابع مشابه
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of signif...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملA Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
We present an efficient numerical strategy for the Bayesian solution of inverse problems. Stochastic collocation methods, based on generalized polynomial chaos (gPC), are used to construct a polynomial approximation of the forward solution over the support of the prior distribution. This approximation then defines a surrogate posterior probability density that can be evaluated repeatedly at min...
متن کاملDimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior...
متن کاملProbabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems
This paper develops a class of meshless methods that are well-suited to statistical inverse problems involving partial differential equations (PDEs). The methods discussed in this paper view the forcing term in the PDE as a random field that induces a probability distribution over the residual error of a symmetric collocation method. This construction enables the solution of challenging inverse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013